Corpus GrippeCanadaV3

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Assessment of Effectiveness of Control Strategies Against Simulated Outbreaks of Highly Pathogenic Avian Influenza in Ontario, Canada.

Identifieur interne : 000111 ( Main/Exploration ); précédent : 000110; suivant : 000112

Assessment of Effectiveness of Control Strategies Against Simulated Outbreaks of Highly Pathogenic Avian Influenza in Ontario, Canada.

Auteurs : N. Lewis [Canada] ; S. Dorjee [Bhoutan] ; C. Dubé [Canada] ; J. Vanleeuwen [Canada] ; J. Sanchez [Canada]

Source :

RBID : pubmed:26666400

Descripteurs français

English descriptors

Abstract

The North American Animal Disease Spread Model (NAADSM) is a stochastic model framework developed to simulate the spread of highly contagious diseases of livestock and poultry, such as foot-and-mouth disease and highly pathogenic avian influenza (HPAI). The objective of this study was to make recommendations on the most effective HPAI control policy for Canada, specifically, on the effect of different speeds of detection, effectiveness of movement restrictions and stamping-out and ring-culling strategies on the magnitude of an HPAI outbreak. In addition, the effect of introduction of infection in a range of multiple farms simultaneously was also evaluated. A total of 21 060 scenarios, defined as different combinations of parameters for various epidemiological conditions and control measures, were created to simulate the number of poultry flocks that would become infected as a result of an incursion of HPAI. Each scenario was parameterized in NAADSM and replicated 1000 times, generating the median number of flocks infected at the end of the simulated outbreak for each scenario. Negative binomial regression analysis was used to model significant explanatory variables of the median number of flocks infected at the end of each simulated outbreak for each of the 21 060 scenarios. The final model included the following explanatory variables: number and type initially infected flock(s), density of flocks within the county where the initially infected flock(s) was located, probability of transmission through indirect contact, subclinical spread of the infection, speed of detection and a two-way interaction between intensity of bird destruction strategy and movement restriction effectiveness to reduce transmission through direct and indirect contacts. The modelling results suggested that stamping out of the detected infected flocks, without ring culling, in combination with effective movement restrictions on direct and indirect contacts, would be the most appropriate policy for Ontario.

DOI: 10.1111/tbed.12461
PubMed: 26666400


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Assessment of Effectiveness of Control Strategies Against Simulated Outbreaks of Highly Pathogenic Avian Influenza in Ontario, Canada.</title>
<author>
<name sortKey="Lewis, N" sort="Lewis, N" uniqKey="Lewis N" first="N" last="Lewis">N. Lewis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE</wicri:regionArea>
<wicri:noRegion>PE</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dorjee, S" sort="Dorjee, S" uniqKey="Dorjee S" first="S" last="Dorjee">S. Dorjee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bhutan Agriculture and Food Regulatory Authority, Ministry of Agriculture and Forests, Thimphu, Bhutan.</nlm:affiliation>
<country xml:lang="fr">Bhoutan</country>
<wicri:regionArea>Bhutan Agriculture and Food Regulatory Authority, Ministry of Agriculture and Forests, Thimphu</wicri:regionArea>
<wicri:noRegion>Thimphu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dube, C" sort="Dube, C" uniqKey="Dube C" first="C" last="Dubé">C. Dubé</name>
<affiliation wicri:level="1">
<nlm:affiliation>Canadian Food Inspection Agency, Ottawa, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Canadian Food Inspection Agency, Ottawa, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vanleeuwen, J" sort="Vanleeuwen, J" uniqKey="Vanleeuwen J" first="J" last="Vanleeuwen">J. Vanleeuwen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE</wicri:regionArea>
<wicri:noRegion>PE</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sanchez, J" sort="Sanchez, J" uniqKey="Sanchez J" first="J" last="Sanchez">J. Sanchez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE</wicri:regionArea>
<wicri:noRegion>PE</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:26666400</idno>
<idno type="pmid">26666400</idno>
<idno type="doi">10.1111/tbed.12461</idno>
<idno type="wicri:Area/Main/Corpus">000163</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000163</idno>
<idno type="wicri:Area/Main/Curation">000163</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000163</idno>
<idno type="wicri:Area/Main/Exploration">000163</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Assessment of Effectiveness of Control Strategies Against Simulated Outbreaks of Highly Pathogenic Avian Influenza in Ontario, Canada.</title>
<author>
<name sortKey="Lewis, N" sort="Lewis, N" uniqKey="Lewis N" first="N" last="Lewis">N. Lewis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE</wicri:regionArea>
<wicri:noRegion>PE</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dorjee, S" sort="Dorjee, S" uniqKey="Dorjee S" first="S" last="Dorjee">S. Dorjee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bhutan Agriculture and Food Regulatory Authority, Ministry of Agriculture and Forests, Thimphu, Bhutan.</nlm:affiliation>
<country xml:lang="fr">Bhoutan</country>
<wicri:regionArea>Bhutan Agriculture and Food Regulatory Authority, Ministry of Agriculture and Forests, Thimphu</wicri:regionArea>
<wicri:noRegion>Thimphu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dube, C" sort="Dube, C" uniqKey="Dube C" first="C" last="Dubé">C. Dubé</name>
<affiliation wicri:level="1">
<nlm:affiliation>Canadian Food Inspection Agency, Ottawa, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Canadian Food Inspection Agency, Ottawa, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vanleeuwen, J" sort="Vanleeuwen, J" uniqKey="Vanleeuwen J" first="J" last="Vanleeuwen">J. Vanleeuwen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE</wicri:regionArea>
<wicri:noRegion>PE</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sanchez, J" sort="Sanchez, J" uniqKey="Sanchez J" first="J" last="Sanchez">J. Sanchez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE</wicri:regionArea>
<wicri:noRegion>PE</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Transboundary and emerging diseases</title>
<idno type="eISSN">1865-1682</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Communicable Disease Control (methods)</term>
<term>Computer Simulation</term>
<term>Disease Outbreaks (prevention & control)</term>
<term>Disease Outbreaks (veterinary)</term>
<term>Influenza A virus (pathogenicity)</term>
<term>Influenza in Birds (epidemiology)</term>
<term>Influenza in Birds (prevention & control)</term>
<term>Models, Biological</term>
<term>Ontario (epidemiology)</term>
<term>Ovum</term>
<term>Poultry</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Contrôle des maladies contagieuses ()</term>
<term>Flambées de maladies ()</term>
<term>Flambées de maladies (médecine vétérinaire)</term>
<term>Grippe chez les oiseaux ()</term>
<term>Grippe chez les oiseaux (épidémiologie)</term>
<term>Modèles biologiques</term>
<term>Ontario (épidémiologie)</term>
<term>Ovule</term>
<term>Simulation numérique</term>
<term>Virus de la grippe A (pathogénicité)</term>
<term>Volaille</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Influenza in Birds</term>
<term>Ontario</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Communicable Disease Control</term>
</keywords>
<keywords scheme="MESH" qualifier="médecine vétérinaire" xml:lang="fr">
<term>Flambées de maladies</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Influenza A virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Disease Outbreaks</term>
<term>Influenza in Birds</term>
</keywords>
<keywords scheme="MESH" qualifier="veterinary" xml:lang="en">
<term>Disease Outbreaks</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Grippe chez les oiseaux</term>
<term>Ontario</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Computer Simulation</term>
<term>Models, Biological</term>
<term>Ovum</term>
<term>Poultry</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Contrôle des maladies contagieuses</term>
<term>Flambées de maladies</term>
<term>Grippe chez les oiseaux</term>
<term>Modèles biologiques</term>
<term>Ovule</term>
<term>Simulation numérique</term>
<term>Volaille</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The North American Animal Disease Spread Model (NAADSM) is a stochastic model framework developed to simulate the spread of highly contagious diseases of livestock and poultry, such as foot-and-mouth disease and highly pathogenic avian influenza (HPAI). The objective of this study was to make recommendations on the most effective HPAI control policy for Canada, specifically, on the effect of different speeds of detection, effectiveness of movement restrictions and stamping-out and ring-culling strategies on the magnitude of an HPAI outbreak. In addition, the effect of introduction of infection in a range of multiple farms simultaneously was also evaluated. A total of 21 060 scenarios, defined as different combinations of parameters for various epidemiological conditions and control measures, were created to simulate the number of poultry flocks that would become infected as a result of an incursion of HPAI. Each scenario was parameterized in NAADSM and replicated 1000 times, generating the median number of flocks infected at the end of the simulated outbreak for each scenario. Negative binomial regression analysis was used to model significant explanatory variables of the median number of flocks infected at the end of each simulated outbreak for each of the 21 060 scenarios. The final model included the following explanatory variables: number and type initially infected flock(s), density of flocks within the county where the initially infected flock(s) was located, probability of transmission through indirect contact, subclinical spread of the infection, speed of detection and a two-way interaction between intensity of bird destruction strategy and movement restriction effectiveness to reduce transmission through direct and indirect contacts. The modelling results suggested that stamping out of the detected infected flocks, without ring culling, in combination with effective movement restrictions on direct and indirect contacts, would be the most appropriate policy for Ontario.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">26666400</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>10</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1865-1682</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>64</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2017</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Transboundary and emerging diseases</Title>
<ISOAbbreviation>Transbound Emerg Dis</ISOAbbreviation>
</Journal>
<ArticleTitle>Assessment of Effectiveness of Control Strategies Against Simulated Outbreaks of Highly Pathogenic Avian Influenza in Ontario, Canada.</ArticleTitle>
<Pagination>
<MedlinePgn>938-950</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/tbed.12461</ELocationID>
<Abstract>
<AbstractText>The North American Animal Disease Spread Model (NAADSM) is a stochastic model framework developed to simulate the spread of highly contagious diseases of livestock and poultry, such as foot-and-mouth disease and highly pathogenic avian influenza (HPAI). The objective of this study was to make recommendations on the most effective HPAI control policy for Canada, specifically, on the effect of different speeds of detection, effectiveness of movement restrictions and stamping-out and ring-culling strategies on the magnitude of an HPAI outbreak. In addition, the effect of introduction of infection in a range of multiple farms simultaneously was also evaluated. A total of 21 060 scenarios, defined as different combinations of parameters for various epidemiological conditions and control measures, were created to simulate the number of poultry flocks that would become infected as a result of an incursion of HPAI. Each scenario was parameterized in NAADSM and replicated 1000 times, generating the median number of flocks infected at the end of the simulated outbreak for each scenario. Negative binomial regression analysis was used to model significant explanatory variables of the median number of flocks infected at the end of each simulated outbreak for each of the 21 060 scenarios. The final model included the following explanatory variables: number and type initially infected flock(s), density of flocks within the county where the initially infected flock(s) was located, probability of transmission through indirect contact, subclinical spread of the infection, speed of detection and a two-way interaction between intensity of bird destruction strategy and movement restriction effectiveness to reduce transmission through direct and indirect contacts. The modelling results suggested that stamping out of the detected infected flocks, without ring culling, in combination with effective movement restrictions on direct and indirect contacts, would be the most appropriate policy for Ontario.</AbstractText>
<CopyrightInformation>© 2015 Blackwell Verlag GmbH.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lewis</LastName>
<ForeName>N</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dorjee</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Bhutan Agriculture and Food Regulatory Authority, Ministry of Agriculture and Forests, Thimphu, Bhutan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dubé</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Canadian Food Inspection Agency, Ottawa, ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>VanLeeuwen</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sanchez</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Transbound Emerg Dis</MedlineTA>
<NlmUniqueID>101319538</NlmUniqueID>
<ISSNLinking>1865-1674</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003140" MajorTopicYN="N">Communicable Disease Control</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004196" MajorTopicYN="N">Disease Outbreaks</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
<QualifierName UI="Q000662" MajorTopicYN="Y">veterinary</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009980" MajorTopicYN="N">Influenza A virus</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005585" MajorTopicYN="N">Influenza in Birds</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009864" MajorTopicYN="N">Ontario</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010063" MajorTopicYN="N">Ovum</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011200" MajorTopicYN="N">Poultry</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">North American Animal Disease Spread Model</Keyword>
<Keyword MajorTopicYN="N">control strategies</Keyword>
<Keyword MajorTopicYN="N">highly pathogenic avian influenza</Keyword>
<Keyword MajorTopicYN="N">policy</Keyword>
<Keyword MajorTopicYN="N">simulation modelling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>07</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26666400</ArticleId>
<ArticleId IdType="doi">10.1111/tbed.12461</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Bhoutan</li>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Lewis, N" sort="Lewis, N" uniqKey="Lewis N" first="N" last="Lewis">N. Lewis</name>
</noRegion>
<name sortKey="Dube, C" sort="Dube, C" uniqKey="Dube C" first="C" last="Dubé">C. Dubé</name>
<name sortKey="Sanchez, J" sort="Sanchez, J" uniqKey="Sanchez J" first="J" last="Sanchez">J. Sanchez</name>
<name sortKey="Vanleeuwen, J" sort="Vanleeuwen, J" uniqKey="Vanleeuwen J" first="J" last="Vanleeuwen">J. Vanleeuwen</name>
</country>
<country name="Bhoutan">
<noRegion>
<name sortKey="Dorjee, S" sort="Dorjee, S" uniqKey="Dorjee S" first="S" last="Dorjee">S. Dorjee</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/GrippeCanadaV3/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000111 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000111 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    GrippeCanadaV3
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26666400
   |texte=   Assessment of Effectiveness of Control Strategies Against Simulated Outbreaks of Highly Pathogenic Avian Influenza in Ontario, Canada.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26666400" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GrippeCanadaV3 

Wicri

This area was generated with Dilib version V0.6.35.
Data generation: Tue Jul 7 13:36:58 2020. Site generation: Sat Sep 26 07:06:42 2020